GQ-155SC

协议转换器

用户手册

V1.02 2011. 1

版本信息

版本	日期	更改说明
V1.00	2010-10-27	文档创建。
		修改典型应用图
V1.01	2010-12-28	修改内置误码仪描述
		修改网管通道描述
V1.02	2011-1-17	修改默认定时配置

=
সি
 ~1 /

1	系统简介	5
	1.1 概述	5
	1.2 特点	5
~		_
2	系统结构	/
	2.1 结构框图	7
	2.2 组件说明	7
	2.3 155SC插槽说明	8
	2.4 E1 业务卡介绍	9
	2.4.1 CLIU4/8 E1 业务卡	9
	2.4.2 CLIUB4/8-B 业务卡	9
2	曲 刑 应 田	10
5	與至应用	10
4	面板描述	12
	4.1 前面板说明	12
	4.2 后面板说明	14
E	고규 승인 가지 머리	16
Э	功能说明	10
	5.1 交叉连接功能	16
	5.2 通道保护功能	16
	5.2.1 1+1 模式	16
	5.2.2 1+0 模式	18
	5.3 时隙编号	18
	5.4 ALS功能	20
	5.5 RPD功能	21
	5.6 以太网功能	21
	5.7 VLAN 功能	22
	5.7.1 基于端口的VLAN	22
	5.7.1.1 基于端口VLAN的组网示例	. 24
	5.7.1.2 配直平例	. 26
	5.7.1.5 以入网项目	. 21 20
	5.7.2 002.1 Q你签至 VLAN	20
	5.7.2.7 802.1Q标签型VIAN的组网示例	. 20
	5.7.2.3 配置举例	. 30
	5.8 GFP-F功能	32
	5.9 VCAT & LCAS功能	33
	5.10 设备定时	34
	5.10.1 定时源	34
	5.10.2 定时状态	34
	5.10.3 定时源选择	35
	5.10.4 同步状态消息(SSM)	35
	5.10.5 默认定时设置	36
	5.11 环回控制	36
	5.12 内置误码仪	37
	5.12.1 特点	37
	5.12.2 使用说明	38
	5.13 网管通道	40

	5.13.1 基于SDH开销的网管	40
	5.13.2 基于内部E1 通道的网管	41
	5.13.2.1 应用案例一	41
	5.13.2.2 应用案例二	42
	5.14 告警和性能	43
	5.15 设备管理	47
6	设备安装及注意事项	49
7	技术参数	49
附	录一 串行网管接口(CONSOLE)	52
附	录二 E1 接口	53
附	录三 相关文档	54

1系统简介

1.1 概述

155SC 是一款体积小巧、设计简洁的 MSTP 传输设备。它具有两路 STM-1 等级群路光口, 4/8 路 E1 业务接口以及 4 个符合 IEEE802.3/802.3u 标准的以太网接口,可实现 E1 和基于 GFP 封装的以太网等业务的复用和传输。

155SC 支持端口 VLAN 和符合 IEEE 802.1Q 标准的标签型 VLAN 功能,支持 4 个 VCG(传输通道),每个 VCG 可汇聚 1 个或多个以太网业务接口,每个以太网接口可对应 1 个或多个 VCG 通道, VCG 的带宽可灵活配置,实现以太网数据在 SDH 网络中的高效传输。

155SC 支持基于 RS232 和 TELNET 的 CLI 命令行管理方式,同时支持 SNMP_V1 和 SNMP_V2 协议,支持 C/S 架构的网络管理平台 RAYVIEW,可以轻松完成对复杂网络配置、管理和维护。

155SC 设备适合用户侧数据接入场合,它采用符合 ITU-T G.7041、G.7042、G.707 标准的 EOS(Ethernet Over SDH) 技术,可以与遵循相同标准的设备互通。

1.2 特点

- 机箱结构
 - ▶ 1U 高,宽 270mm,深 195mm
- 支持 TU-12 颗粒度交叉连接功能
- 光接口
 - ▶提供 2 个 STM-1 速率等级群路光接口,采用 SFP 光模块(LC 接口),支持热插拔
 - ▶光口只支持单模光纤,光纤传输距离支持 15km (生产默认)、40km 和 80km
 - ▶ 光口指标符合标准 GB/T15941-1995 和 ITU-T G.813
 - ▶ 光口支持 RPD (Remote Power Down Detection) 信息检测,并支持本端设备掉电信息发送
 - ▶ 光口支持 ALS(Automatic Leaser Shutdown)自动激光关断功能,可有效保护操作 人员安全
- E1 接口
 - ▶提供1个E1接口卡槽位,可选择安装4路或者8路E1接口卡
 - ▶可选择 120Ω 平衡式 E1 接口(RJ48C 接口)或 75Ω 非平衡式 E1 接口(DB37 接口, 可通过适配器提供 BNC 接口)
 - ▶ E1 接口符合 ITU-T G.703 标准
- 以太网接口
 - ▶提供4个LAN口(物理接口),每个LAN口支持自协商,也支持强制 10M/100M 全/

半双工模式

- ▶提供4个WAN□(内部端□),每个WAN□分别对应一个VCG,每个VCG带宽最 大为48个VC12(100Mbps),4个VCG总带宽为63个VC12
- ▶ 4 个 LAN 口和 4 个 WAN 口符合 IEEE802.3/802.3u 标准
- ▶ 支持流控和广播风暴过滤功能
- ▶支持端口型 VLAN 和符合 IEEE 802.1Q 标准的标签型 VLAN 功能
- ▶ 支持 GFP-F 封装,符合 ITU-TG.7041 标准
- ▶ 支持虚级联 VCAT 和 LCAS 链路容量自动调整机制,符合 ITU-T G.707,G.7042 标准
 ▶ 提供 VC12 时延检测,任意两路 VC-12 通道之间可容忍的最大延迟差可达 112ms
 ▶ 提供 LCAS 和非 LCAS 两种模式
- 定时模式
 - ▶可选跟踪内部定时源,符合 ITU-T G.813 标准
 - ▶ 可选跟踪 STM-1 光线路定时源(T11、T12)
 - ▶定时源可根据告警、SSM 值、频偏以及人工设定优先级自动切换,也可以人工强制 切换。
- 通道保护
 - > 支持 1+1 通道保护功能,保护倒换时间优于 50ms
 - ▶ 支持自动保护倒换及强制倒换功能
- 支持内置误码仪和多种环回操作
- 支持 FTP 文件传输协议,实现嵌入式软件的在线升级、对设备配置数据的上载和下载 操作。
- 网元管理
 - ▶提供串行管理接口(CONSOLE)和以太网管理接口(EMU),连接器均采用 RJ45
 - ▶ 支持 DCC、内嵌 DCN 的网络管理方式
 - ▶支持基于串口和 TELNET 的 CLI 命令行管理方式, CLI 仅支持对本地设备的单独管理, 不能管理网络中的其它网元
 - ▶支持 SNMP_V1 和 SNMP_V2 协议,支持 C/S 架构的网络管理平台 RAYVIEW,轻松 完成对复杂网络配置、管理和维护
- 设备支持单个-48V 直流电源供电或者单个~220V 交流电源供电,设备功耗小于 15W

2 系统结构

2.1 结构框图

155SC 由机箱、系统主板、E1 插卡和电源组合而成。如图 2-1 所示:

图 2-1 系统结构框图

2.2 组件说明

表 2-2 组件说明

组件	组件规格		描述	备注
机箱	155SC 机箱		高 1U、宽 270mm、深 195mm; 颜色默	必选
			认为黑色,用户可以定制不同的颜色。	
主板	155SC 主板		系统主板,提供两个 STM-1 光接口,实	必选
			现设备定时及 EOS 功能。	
ARM	CARMJ 卡		实现设备管理	必选
卡				
E1 业	CLIU8卡	DB37F-BNC-8E1	8 路非平衡式 E1 业务卡,通过线缆适配	可选
务卡		线缆适配器	器提供 BNC 接口	

	CLIU4卡	DB37F-BNC-4E1	4 路非平衡式 E1 业务卡,通过线缆适配	可选
		线缆适配器	器提供 BNC 接口	
	CLIUB8-B 卡	-	8 路平衡式 E1 业务卡, RJ48C 接口	可选
	CLIUB4-B 卡	-	4 路平衡式 E1 业务卡, RJ48C 接口	可选
SFP	口 双纤,1310nm,15Km		单模SFP光模块	可选
模块	口 双纤,1310nm,40Km			
	口 双纤,1550nm,80Km			
电源模	口 -48V DC 单电源		-48V DC 转 5.45V 电源模块(DC-DC);	必选其
块	口 220V AC 单电源		220V AC 转 5.45V 电源模块(AC-DC);	<u> </u>

注 1: 符号'口' 表示该内容为可选项

注 2: E1 业务卡详细介绍参见'2.4 E1 业务卡介绍'。

注 3: 上述 SFP 光模块均带 DDM 功能,如果用户选择其它型号的 SFP 光模块,建议选择带有 DDM 功能,否则可能造成某些信息无法正确上传。

2.3 155SC插槽说明

表 2-3 插槽说明

名称	描述
Card_ slot1	CARMJ卡插槽
Connector 1	E1卡插槽
Optical_ connector 1	SFP 光模块
Optical_ connector 2	SFP 光模块
Power_connector	电源模块,如果选择的电源模块为DC-DC模块,则相应的电源接
	口面板为-48VDC面板,同时外部电源应接入-48VDC;如果选择
	的电源模块为AC-DC模块,则相应的电源接口面板为220VAC面
	板,同时外部电源应接入220VAC。

注意: 1. 严禁带电插拔业务板卡,否则可能导致板卡损坏。

2. 操作者在插拔 SFP 光模块时,设备必须良好接地,操作者必须良好接地,否则可能导致设备损坏。

155SC 设备可以根据用户需要,通过选择插入 E1 业务卡,提供 4 路或 8 路 E1 业务。系统 提供 4 种 E1 业务卡,分别是 CLIU4, CLIU8, CLIUB4-B, CLIUB8-B 业务卡。

2.4.1 CLIU4/8 E1 业务卡

CLIU4/8 E1 业务卡提供 4/8 非平衡 E1 接口,接口速率为 2.048 Mb/s,符合 ITU-T G.703 标准。该接口卡采用 DB37 连接器作为物理接口,需接 4/8E1 非平衡式线缆适配器: DB37F-BNC-4/8E1,线缆的详细介绍参见附录二。

2.4.2 CLIUB4/8-B 业务卡

CLIUB4/8-B E1 业务卡提供 4/8 平衡式 E1 接口,接口速率为 2.048 Mb/s,符合 ITU-T G.703 标准。接口卡采用 RJ45 连接器作为物理接口,RJ45 线序介绍参见附录二。

注意: 安装 E1 业务卡时,需要关电拆除机箱盖,安装固定好 E1 接口卡后,重新盖上机箱盖后 再打开电源开关。

3 典型应用

155SC 是专门针对接入网设计的产品,主要应用在用户接入侧,提供 E1 及以太网等接入方式。如图 3-1 所示,155SC 设备分布在各个用户接入侧,根据不同的用户需求,每个 155SC 设备提供 4/8 路 E1 及 1-4 路以太网业务,业务数据通过 STM-1 接口汇聚到光 HUB 设备 (HUB100-2D),并最终汇聚到业务汇聚设备上,从而实现了用户数据的远距离传输。

图 3-1 典型应用

155SC 既可用作 TM 设备,又可用作 ADM 设备,组网应用灵活;支持点对点、链网、环型 网络。在组成环网时,支持 1+1 通道保护倒换。

图 3-2 点对点应用

注:每台设备的A光口必须与其相邻设备的B光口相接。

4 面板描述

4.1 前面板说明

155SC 的前面板分布着光口、设备地址开关、工作状态和告警指示灯、网管接口、告警音使能开关等。如图 **4-1** 所示:

OU OPTA T IN	OU OPTB	ADDRES MS S LSB		NOPA NOPB		RMCONSOLE EMU	
00	00	0 	RUN DALM	RPDA RPDB	TALM		RSM-155SC

图 4-1 前面板视图

表 4-1-1 前面板控制开关说明

名称	功能描述
MUTE	告警音屏蔽开关
	ON (按钮按下时): 屏蔽声音告警;
	OFF (按钮弹出时):告警音打开。
	注意: 当某一告警被软件屏蔽时, 该告警将不能触发告警音。
	网元站址设置开关。
	设备地址选择范围是"00"至"98"。高4位"1~4"用于设置地址的十位数字,低4位
	"5~8"用于设置地址的个位数字,采用10进制的BCD编码方式。ON为0,OFF为
ADDRESS	1;
	例如: 10011000 设备地址为 98。
	注:站址是网管系统识别设备的唯一固定编号,同一个子网中不能设置相同的设
	备地址,否则不能正常建立网管。

表 4-1-2 前面板指示灯说明

名称	指示灯说明		
	电源指示灯,绿色。		
PWR	常亮:设备供电正常;		
	常灭:设备供电不正常。		
	设备处理器运行指示灯,绿色。		
RUN	闪烁:处理器运行正常(闪烁周期为0.3秒);		
	快闪:设备上电初始化(快闪周期为0.1秒)		

	慢闪: ARM 处理器往 FLASH 存储数据(慢闪周期为1秒)
	长亮/常灭:设备处理器运行异常。
	紧急告警指示灯,红色。
	常亮:设备出现表 5-14-1 中的任意一个 UALM 告警;
UALIM	常灭:设备没有出现表 5-14-1 中的 UALM 告警。
	注: 被管理软件屏蔽了的告警不会触发告警指示灯 UALM。
	非紧急告警指示灯,黄色。
	常亮:设备出现表 5-14-1 的任意一个 DALM 告警;
DALIN	常灭:设备没有出现表 5-14-1 中的 DALM 告警。
	注: 被管理软件屏蔽了的告警不会触发告警指示灯 DALM。
	光口收无光告警指示灯,红色。
	常亮: SFP 口没有收到光信号;
	常灭: SFP口收到光信号、没有插入SFP光模块、光口被软件关闭或者
	NOP告警被软件屏蔽。
	注:
NOPA/B	1. 在光纤恢复时,由于 ALS 使能,使发光器可能需经过一段时间才
	能开始发光,则 NOP 灯的变灭可能会经过一段延时。(ALS 为长
	间隔模式下,该延时最大约为 100s; ALS 为短间隔模式下,该
	延时最大约为 12.5s)
	2. NOP 告警被软件屏蔽,或者没有插入 SFP 光模块将直接屏蔽掉
	对应光口的 NOP 告警,对应指示灯为灭。
	远端设备掉电指示灯,黄色。
	常亮: 设备检测到光口 A/B 对应的远端设备掉电;
	注:
RPDA/B	1. 此灯必须与 NOP 灯一起分析,判断远端掉电或断纤。参见"5.5
	RPD 功能"。
	2. RPD 告警被软件屏蔽,或者没有插入 SFP 光模块将直接屏蔽掉
	对应光口的 RPD 告警,对应指示灯为灭。
TALM	E1 接口 TLOS 总告警指示灯,红色。
	常亮:至少有1路E1存在TLOS告警;
	灭:所有 E1 无 TLOS 告警或没有插入 E1 卡或 E1 接口被软件关闭(去
	激活)或 E1 接口没有被分配时隙。
	光口 ALS 功能指示灯,绿色。
ALS	常亮: A、B 光口的 ALS 功能同时被网管软件配置为使能;

常灭: A、B 光口的 ALS 功能均未被网管软件配置为使能。
注: A、B两个光口的 ALS 功能只能被网管软件同时配置为使能或不使
能,只有当相应光口收无光时,且 ALS 功能通过网管软件被使能,ALS
才会在相应光口自动开启。

表 4-1-3 EMU 接口指示灯说明

LINK/ACTIVE	以太网链接工作指示灯,绿色。
	常亮: 连接正常但无数据收发;
	闪烁: 连接正常且有数据收发;
	常灭:未连接或损坏。
SPEED	以太网速率指示灯,黄色。
	常亮:工作在 100M;
	常灭:工作在 10M。

表 4-1-4 前面板接口说明

名称	功能描述	备注
		在使用光纤连接两台设备的光
		模块时,应该注意参考相应光
	STM-1 光接口 A 和 B,实现 STM-1 光信号的发送	模块的技术参数(发送光功率
OPTA/B	和接收;	与过载光功率),如果两设备之
	采用 SFP 光模块,支持在线热插拔。	间距离很近(比如在实验室测
		试),需要在光纤之间加衰减
		器,以免损坏光器件。
CONSOLE	串行网管接口(RJ45连接器),用于 CLI 网管	接口线序参见附录一。
	以太网网管接口(RJ45 连接器),实现 SDH 网络	使用 CAT-5 交叉或直通电缆。
EIVIU	的管理功能。	
1		

4.2 后面板说明

图 4-2-1 后面板视图 1

图 4-2-2 后面板视图 2

表 4-2 后面板说明

名称	功能描述	备注
	根据用户选择的开板电源模块类型,实现不同的电	
	源接入。	
电源接口面	如果选择 DC-DC 电源模块,则后面板应使用-48V	
板	电源接口面板,如图 4-2-1 所示;如果选择 AC-DC	
	电源模块,则后面板应使用~220V电源接口面板,	
	如图 4-2-2 所示。	
		如果采用 AC-DC 电源模
中海工头	"I": ON, 开通电源;	块,此开关直接控制~220V
电源开天	"O": OFF, 关闭电源。	电源开断;如果采用
(311)		DC-DC 电源模块,此开关
		直接控制-48V 电源开断。
	如果选择安装了 CLIU8/4 E1 卡,则该 E1 接口为	
	8/4E1 非平衡式 E1 接口,接口连接器:DB37;	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
E1 接口	如果选择安装了 CLIUB8/4-B,则该 E1 接口为	
	8/4E1 平衡式 E1 接口,接口连接器:RJ45;	DB37F-BNC-8E1/4E1 线
	如果没有安装 E1 接口卡,则不存在 E1 接口。	现迫阳奋, 具体奓见附求
	4个以太网电接口。采用 RJ45 连接方式,支持交	
以太网接口	叉和直通两种网线自适应。更多详细说明见章节	
	5.6 "以太网功能"。	
А	设备保护地 PGND 螺钉,与机箱外壳连接。外部	
	PGND 线缆通过螺钉连接到保护地。	

5 功能说明

5.1 交叉连接功能

155SC 支持 TU-12 颗粒度交叉连接功能,设备的 E1 业务和 EOS 业务可以分配到光口 OPTA/B 的任意时隙中,从而实现利用 SDH 网络传输 E1 业务及以太网业务。

通过网管软件或者 CLI 可以完成交叉连接的建立和删除操作,用户可以根据需要对设备进行 以下交叉连接配置:

- ◆ 建立交叉连接链路: 在业务端口和光口之间建立一条或几条 VC-12 交叉链路,占用通 道资源。注意: 对于 EOS 业务,一个以 VCG 最多可以分配 48 个 VC12,4 个 VCG 总带宽为 63 个 VC12。
- ◆ 删除交叉连接链路:删除业务端口和光口之间建立的一条或几条 VC12 交叉链路,释 放其占用的通道资源,该资源可以被再次进行分配。

注意: 空闲时隙将向上行通道插入 TU-AIS 告警;设备出厂时没有交叉连接链路,通道资源 全部为空闲,此时 OPTA 和 OPTB 上行通道全部插入 TU-AIS 告警。

5.2 通道保护功能

155SC 设备支持 1+1 通道保护功能,当建立交叉连接链路后,可以为每条交叉连接链路选择相应的保护模式,如选择 1+1 模式时,则该交叉链路具备通道保护功能;选择为 1+0 模式时,则该时隙链路将不具备通道保护功能,可以提高光口使用带宽利用率。

5.2.1 1+1 模式

在 1+1 模式中,每条链路都有保护链路,利用优收并发功能,对客户数据进行保护。设备可以自动选择接收方向,也可以人工强制接收方向。如图 5-2-1 所示,当选择了 1+1 模式后,在 NE1 的发送端,客户数据将占用两条光线路相同编号的时隙(即占用工作时隙链路和保护时隙链路),向两个光方向同时发送。,这两个方向的相同数据将沿着各自的光纤被传输到 NE2 的接收端,在自动保护打开的(无人为干涉)情况下,NE2 将自动选择从信号质量好的一个方向来接收。如果 NE2 目前从 West 方向接收数据,当该方向光纤断纤或其它故障时,NE2 将选择从 East 方向接收数据。由于在 1+1 模式下,数据将占用两个方向的相同时隙,因此此模式下的传输带宽只有 63 个 VC12。

注意: 图 5-2-1 中的'……' 指被省略掉的 SDH 传输设备; 图 5-2-1 中的 NE1 和 NE2 分别 各指一台 155SC 设备。

图 5-2-1 1+1 模式

在 1+1 模式中,可以为每条交叉连接链路选择打开自动保护或关闭自动保护。

■ 打开自动保护

打开自动保护即打开自动保护倒换,默认自动保护倒换的条件为:支路 TU-AIS 或 TU-LOP 告警。自动保护倒换的条件可以通过网管软件进行配置,除 TU-AIS 和 TU-LOP 告警外,用户可 以在倒换条件中选择加入 RS-TIM、MS-EXC、HP-EXC、HP-DEG、HP-TIM、HP-UNEQ、HP-PLM、 HP-AIS 告警中的一种或几种,满足更多的组网应用需求。

在打开自动保护的情况下,可以执行自动保护倒换、优先倒换到 A 和优先倒换到 B 操作。

- 自动保护倒换:当自动保护打开时,系统进入自动倒换状态,业务数据在 155SC 设备的A光口时隙和 B光口时隙上同时发送,在接收端根据保护倒换条件优收。
- 优先倒换到 A/B:系统执行该操作前,将首先检查该光口(A/B)的相应时隙是否存在 倒换条件所列的告警,如果不存在告警,则系统将在一段时间后(可由用户设定)执 行操作;如果存在告警,则系统将不倒换,直到该光口通信正常。

注意: 在设备重新上电后,优先倒换命令会被保存,即: 如果重新上电前优先倒换到A,则上电后设备工作在优先倒换到A 状态。

■ 关闭自动保护

关闭自动保护即关闭自动保护倒换,即不管对应的时隙有无告警,系统不做任何自动保护倒

换操作,在此情况下,可以执行强制倒换到 A 和强制倒换到 B 操作。

▶ 强制倒换到 A/B:系统将无条件切换到对应光口(A/B)接收该时隙,而不会检查对应 光口的相应时隙是否存在告警。

注意: 在设备重新上电后,强制倒换命令不会被保存,即: 如果重新上电前为强制倒换到A,则 上电后设备为关闭自动保护倒换的初始状态。

通过网管软件或 CLI 命令可对以上功能进行配置,具体配置见《RAYVIEW 网管用户手册》 或 《Guide to CLI command of 155SC》。

5.2.2 1+0 模式

1+0 模式即对应的时隙链路没有备份链路作为保护,客户数据仅在一个方向的时隙链路上传输,由于没有备份链路,A、B 光口中相同编号的时隙可以分别承载不同的业务,可以提高带宽利用率,如图 5-2-2 所示.通过网管软件或 CLI 命令可对以上功能进行配置,具体配置见《RAYVIEW 网管用户手册》或 《Guide to CLI command of 155SC》。

注: 以太网业务不支持 1+0 模式。

图 5-2-2 1+0 mode

5.3 时隙编号

为了与其他厂家设备连接,通过 CLI 命令或 RAYVIEW 网管软件可以为光口同时选择时隙编 码方式:逻辑编码、时隙编码和线路编码,时隙编码方式默认为:时隙编码方式。注意:如需改 变光口的编码方式,必须先删除该光口所有时隙交叉链路。

TUG3	TUG2	TU12	逻辑编码	时隙编码	线路编码
1	1	1	1	1	1
2	1	1	22	2	22
3	1	1	43	3	43
1	2	1	2	4	4
2	2	1	23	5	25
3	2	1	44	6	46
1	3	1	3	7	7
2	3	1	24	8	28
3	3	1	45	9	49
1	4	1	4	10	10
2	4	1	25	11	31
3	4	1	46	12	52
1	5	1	5	13	13
2	5	1	26	14	34
3	5	1	47	15	55
1	6	1	6	16	16
2	6	1	27	17	37
3	6	1	48	18	58
1	7	1	7	19	19
2	7	1	28	20	40
3	7	1	49	21	61
1	1	2	8	22	2
2	1	2	29	23	23
3	1	2	50	24	44
1	2	2	9	25	5
2	2	2	30	26	26
3	2	2	51	27	47
1	3	2	10	28	8
2	3	2	31	29	29
3	3	2	52	30	50
1	4	2	11	31	11
2	4	2	32	32	32
3	4	2	53	33	53
1	5	2	12	34	14
2	5	2	33	35	35
3	5	2	54	36	56
1	6	2	13	37	17

2	6	2	34	38	38
3	6	2	55	39	59
1	7	2	14	40	20
2	7	2	35	41	41
3	7	2	56	42	62
1	1	3	15	43	3
2	1	3	36	44	24
3	1	3	57	45	45
1	2	3	16	46	6
2	2	3	37	47	27
3	2	3	58	48	48
1	3	3	17	49	9
2	3	3	38	50	30
3	3	3	59	51	51
1	4	3	18	52	12
2	4	3	39	53	33
3	4	3	60	54	54
1	5	3	19	55	15
2	5	3	40	56	36
3	5	3	61	57	57
1	6	3	20	58	18
2	6	3	41	59	39
3	6	3	62	60	60
1	7	3	21	61	21
2	7	3	42	62	42
3	7	3	63	63	63

5.4 ALS功能

为了在光器件发送光口裸露(未接光纤)时,保护操作者眼睛不被发送激光伤害,155SC 设备的光接口支持 ALS (Automatic Laser Shutdown)功能。在 ALS 功能使能的情况下,当系统检测 到接收光信号消失 800ms 后,系统将自动衰减发光功率或停止发送,然后按一定间隔发送光脉 冲,以便在光纤恢复后能够自动恢复光口发送。系统默认 ALS 为使能,短间隔模式。

在 ALS 功能使能时,支持手动启动功能(手动发送光脉冲)。即当光纤重新连接正常后,通过 手动发送光脉冲操作使光器件在 2s 之内正常发光;在光纤未连接或仅单向连接时,进行手动发 送光脉冲操作后,光器件发光 2s,再按照一定间隔发送光脉冲。

155SC 设备支持通过 CLI 或 RAYVIEW 网管软件对 ALS 功能进行配置, 如 ALS 功能的使能

或关闭,手动发送光脉冲,配置 ALS 为长间隔模式或短间隔模式等,具体配置参考《RAYVIEW 网管用户手册》或《Guide to CLI command of 155SC》。 注意:

- ALS 功能使能仅仅是通过网管软件配置使 ALS 功能有效,只有当相应光口收无光时, 且 ALS 功能通过网管软件被使能,ALS 才会在相应光口自动开启。
- 2) 测量光器件发送功率和接收灵敏度时, ALS 功能应该关闭。

5.5 RPD功能

在工程开通和设备日常维护的过程中,经常会遇到光纤线路断纤或远端设备断电的情况, 155SC 的远端断电检测功能可区分这两种情况,为设备的维护提供了方便。在这两种情况下,设 备的 NOP 和 RPD 告警指示灯的状态不同,见表 5-5:

表 5-5 RPD 与 NOP 告警灯关系说明

与 A (B) 光口连接的远端	与A(B)连接的远端设	与 A (B) 连接的
设备未断电,光纤正常	备断电,光纤正常	远端设备断电,光
		纤A(B)断开
灭	亮	灭
灭	灭	亮
	与 A (B) 光口连接的远端 设备未断电,光纤正常 灭 灭	与A(B)光口连接的远端 与A(B)连接的远端设 设备未断电,光纤正常 备断电,光纤正常 灭 亮 灭 灭

5.6 以太网功能

155SC 可提供 4 个符合 IEEE802.3/802.3u 标准的以太网电接口(LAN 口),每个 LAN 口都 支持自协商模式,可工作在 100M 全双工、100M 半双工、10M 全双工或 10M 半双工模式,也 支持强制模式,可工作在 100M 全双工、100M 半双工、10M 全双工或 10M 半双工模式。每个 LAN 口都分别支持流控功能。

155SC 同时提供 4 个符合 IEEE802.3/802.3u 标准的 WAN 接口(在内部,不可见),每个 WAN 口固定为强制 100M 全双工模式,分别对应一个 VCG,单个 VCG 带宽最大为 48 个 VC12(100Mbps),4 个 VCG 总带宽最多可配 63 个 VC12。

155SC 支持的以太网最大包长为 1536/1552 字节,用户可以根据需要,通过网管软件进行 配置,系统默认的最大包长为 1552 字节。

为适应用户需求,155SC 支持以下三种 MAC 地址老化模式,可通过网管软件进行配置:

▶ 快速老化: MAC 地址学习功能打开,老化时间为 12s。

▶ 标准老化: MAC 地址学习功能打开,老化时间为 300s。

▶ 老化关闭: MAC 地址学习功能关闭, MAC 地址表不受地址老化时间影响。(适用于故障测试)

更多配置信息请参考《RAYVIEW 网管用户手册》或《Guide to CLI command of 155SC》。

5.7 VLAN 功能

5.7.1 基于端口的VLAN

基于端口的 VLAN 又称静态 VLAN,即基于端口的 VLAN 只能在单台设备(交换机)上实现, 不能跨越设备(交换机)。基于端口的 VLAN 没有 VLAN 路由表,只要为每一个端口设定属于该 端口的端口成员,即目的端口,那么从一个端口接收到的数据将被转发到它的目的端口上,如图 5-7-1-1 所示:

图 5-7-1-1 基于端口的 VLAN

图 5-7-1-1 为 1 个 4 端口交换机的端口 VLAN 示意图,而 155SC 可以提供 8 个端口 (4 个 LAN 口,4 个 WAN 口),同样支持基于端口的 VLAN 功能,可实现多种端口 VLAN 配置。通过 RAYVIEW 网管软件和 CLI 命令都可以进行基于端口的 VLAN 配置。由于 WAN 口为内部端口, 且每一个 WAN 口分别对应一个 VCG,因此某些 VLAN 配置(如 8 个端口互相隔离)没有意义, 为方便用户,RAYVIEW 网管软件只提供 5 种固定模式的端口 VLAN 配置,如表 5-7-1 所示,用 户只需选择相关的模式即可,默认为 mode1,更多配置信息请参考《RAYVIEW 网管用户手册》。 而 CLI 命令没有固定模式限制,这里仅在表 5-7-1 中给出对应模式的 CLI 命令,更多可参见《Guide to CLI command of 155SC 》。

表 5-7-1 VLAN 配置模式

Page 23

5.7.1.1 基于端口 VLAN 的组网示例

图 5-7-1-1-1 基于端口 VLAN 的组网示例一

注: 155SC 设备在各层协议处理上均采用国际标准协议,不仅保持本系列内的接口对通性,而且 可以与其他厂家遵循同样标准的产品对通。本组网示例中,图中右侧的 155SC 设备也可以是其 他遵循同样标准的产品,下同。

图 5-7-1-1-2 基于端口 VLAN 的组网示例二

图 5-7-1-1-3 基于端口 VLAN 的组网示例三

5.7.1.2 配置举例

图 5-7-1-2-1 基于端口 VLAN 的组网示例一

如图 5-7-1-2-1 所示,通过对两台设备(155SC (A),155SC (B))分别划分端口 VLAN,利用 VCG 通道,可以实现以下通信:

LAN A<---->LAN B LAN C<---->LAN D

配置方法为:

步骤一:分别关闭两台设备的 802.1Q 标签型 VLAN;

步骤二: 配置 155SC (A) 的端口表, 如表 5-7-1-2-1 所示:

表 5-7-1-2-1

port	Port Member
LAN1	LAN1, WAN1
LAN4	LAN4, WAN4
WAN1	LAN1, WAN1
WAN4	LAN4, WAN4

注意:如果使用 RAYVIEW 网管软件对其进行配置,则只需为用户端口(LAN 口)和汇集端口(WAN 口)都选择为 mode1 即可。

步骤三: 配置 155SC(B)的端口表,如表 5-7-1-2-1 所示; 至此完成了对两台设备的 VLAN 划分;

步骤四:配置交叉连接,分别为两台设备的 WAN1 口对应的 VCG1 分配 48 个 VC12,为其 WAN4 口对应的 VCG4 分配 15 个 VC12。

-----Config finish-----

注意:在进行端口 VLAN 配置时,VLAN ID 和优先级是无效的,且 VLAN 端口模式必须固定为 'Hybrid'。

5.7.1.3 以太网环回

配置端口 VLAN 时,对 mode2,mode4 和 mode5 的使用需慎重。如图 5-7-1-3-1 所示,如果两端设备都被设置为 mode5,则很可能造成以太网环回,从而导致以太网崩溃。如果两端设备都被设置为 mode2,或一端设置为 mode2,另一端设置为 mode5 等,也会造成以太网工作异常,甚至崩溃。类似这样的配置都是被禁止的。

图 5-7-1-3-1 以太网环回

5.7.2 802.1 Q 标签型 VLAN

802.1Q 标签型 VLAN 要求网桥识别带有 VLAN 标签的帧,根据 VLAN 路由表,找到与包标 签相同的 VLAN ID 的记录,并根据 VLAN 路由表和端口成员表转发数据包。

802.1Q 标签型 VLAN 可以实现跨越设备(交换机)的 VLAN,也就是说,它容许不同设备 (交换机)的端口被分配到同一个 VLAN 中。如图 5-7-2-1 所示:

图 5-7-2-1 802.1Q 标签型 VLAN

155SC 支持符合 IEEE802.1Q 标准的标签型 VLAN。通过网管软件配置,用户可以在不同设备间划分 VLAN,每一个 VLAN 对应一个 VLAN ID (VID),包含相同 VID 的帧只能被转发到属于 该 VLAN ID 的端口上,其它的帧则不能通过。通过 RAYVIEW 网管软件和 CLI 命令都可以进行 802.1Q 标签型 VLAN 配置,更多配置信息请参考《RAYVIEW 网管用户手册》或《Guide to CLI command of 155SC》。

5.7.2.1 802.1Q标签型VLAN术语

Tag: 802.1Q VLAN 标签头,也就是 VLAN ID 号,用于指明数据包属于哪个 VLAN。 **Tag 包:** 包含 802.1Q Tag 标签的数据包。

Untag 包:不包含 802.1Q Tag 标签的数据包,它不属于任何 VLAN。

VLAN ID: VLAN 标识符, VLAN ID 的设置范围为 1-4094 , 默认值为 1 (VLAN ID=0 为 NULLVLAN, 4095 为标准保留)。

PVID: 端口 VLAN ID 号, PVID 设置范围为 1-4094 ,所有端口的 PVID 默认值为 1,当一个不 带标签的数据包进入设备(交换机)端口时,该数据包会被打上相应端口的 PVID。比如,如果 端口 1 的 PVID 是 '2',则进入该端口的任何不带标签的数据包都将被打上 VLAN ID=2 的标签,即这些数据包都将属于 VLAN2.

Access, Trunk, Hybrid: VLAN 的端口模式, 详见表 5-7-2-1.

模式	描述	备注
Access	收报文:	
	对接收到的 tag 包, 如果其 VLAN ID 等于端口 PVID,	
	则转发,否则丢弃;	Access 类型的端口只能属于 1
	对接收的 untag 包,则加上端口的 PVID 标签转发;	个 VLAN, 一般用于连接计算机
		的端口
	发报文:	
	输出 untag 包; 对于 tag 包删除标签后输出 untag 包;	
Trunk	Trunk 模式也被称为 Tag-aware 模式。	
	收报文:	可以属于多个 VLAN, 可以接收
	对接收到的 untag 包,加上端口的 PVID 标签转发;	和发送多个 VLAN 的报文,一
	对接收到的 tag 包直接透传转发;	般用于支持 VLAN 的交换机之
		间连接的端口;
	发报文:	
	输出 Tag 包。	
Hybrid	收报文:	可以属于多个 VLAN, 可以接收
	与 Trunk 模式相同,对接收到的 untag 包,加上端口	和发送多个 VLAN 的报文,可
	的 PVID 标签转发;对接收到的 tag 包直接透传转发;	以用于交换机之间连接,也可以
		用于连接用户的计算机
	发报文:	
	输入设备前为 untag 的包,其输出也是 untag 的包;	

表 5-7-2-1 VLAN 端口模式

输入设备前为 tag 的包,其输出也是 tag 的包。

5.7.2.2 802.1Q 标签型 VLAN 的组网示例

通过进行 802.1Q 标签型 VLAN 配置,可以比端口 VLAN 实现更多的网络应用,这里不再一一列 举。同样需要注意的是,避免以太网环回。

5.7.2.3 配置举例

图 5-7-2-3-1 802.1Q 标签型 VLAN 组网示例

如图 5-7-2-3-1 所示,两台设备的端口 P1 分别连接一台 PC,端口 P2 分别连接一个局域网。现在我们要利用 VCG 通道,实现以下通信:

PC_A<---->PC_B LAN1(VLAN11,VLAN12)<---->LAN2(VLAN11,VLAN12)

注意:

- 1) 图 5-7-2-3-1 中端口 P1 即为设备的 LAN1 口,端口 P2 即为设备的 LAN4 口,端口 P3 即 为设备的 WAN1 口;
- 2) 155SC(A)的端口 P2 属于 3 个不同的 VLAN: VLAN11, VLAN12 以及 VLAN13; 155SC
 (B)的端口 P2 属于 VLAN11 和 VLAN12。 这 3 个 VLAN 之间的隔离是通过其它路由器完成的。

配置方法为:

对于设备 A:

步骤一: 使能 802.1Q 标签型 VLAN;

步骤二:增加 VLAN 表,如下:

VLAN ID	VLAN members
2	P1, P3
11	P2, P3
12	P2, P3
13	P2, P3

步骤三: 配置端口模式

Port	Mode
P1	Access
P2	Trunk
P3	Trunk

步骤四:配置端口的 PVID

port	VLAN_ID (PVID)	priority
P1	2	0 (default)
P2	3	0 (default)
P3	4	0 (default)

步骤五: 配置端口的端口表

port	Port members
P1	P1, P3
P2	P2, P3
P3	P1, P2, P3

对于设备 B:

步骤一: 使能 802.1Q 标签型 VLAN;

步骤二:增加 VLAN 表,如下:

VLAN ID	VLAN members
2	P1, P3
11	P2, P3
12	P2, P3

步骤三: 配置端口模式

Port	Mode
P1	Access

P2	Trunk
P3	Trunk

步骤四:配置端口的 PVID

port	VLAN_ID (PVID)	priority
P1	2	0 (default)
P2	3	0 (default)
P3	4	0 (default)

步骤五: 配置端口的端口表

port	Port members
P1	P1, P3
P2	P2, P3
P3	P1, P2, P3

至此,完成了标签型 VLAN 的配置。

最后: 配置交叉连接,分别为两台设备的 P3 口对应的 VCG1 分配 48 个 VC12;

-----Config finish-----

5.8 GFP-F功能

GFP-F(Frame-mapped Generic Framing Procedure)是 ITU-T G.7041 定义的标准封装协议: 以字节为单位,将变长度的数据载荷映射到 ITU-T G.707 定义的 8bit 同步通道中。如图 5-8-1 所 示,以太网数据帧(不包括前导码、定界符)被封装到一个 GFP 帧中,其中 GFP 帧中的 FCS 校验 字(GFP FCS)、GFP 扩展头(GFP extension hdr)可选;类型字段(Type)内容可以配置。

图 5-8-1 GFP 帧结构图

为了能与其它厂家的符合相同标准的设备通信,155SC 支持网管软件对 GFP 帧中以下内容 的配置:

- PFI (Payload FCS Indicator):负载 FCS 指示,它用来指示是否使用载荷 FCS 校验和。
 PFI 使能:使用载荷 FCS 校验和;
 PFI 不使能:不使用 FCS 校验和。
 缺省值: PFI 不使能
- EXI (Extension Header Identifier): 扩展头类型指示,它用来指定扩展头的类型,可选空帧头(Null header)或线性帧头(linear header)
 缺省值:空包头

相关配置方法请参考《RAYVIEW 网管用户手册》或《Guide to CLI command of 155SC》。 注意: 当与相同设备通信时,保持缺省值; 当与其它厂商设备通信时,根据需要改变上述配置项。

5.9 VCAT & LCAS功能

155SC 支持符合 ITU-T 标准的低阶虚级联 VCAT (Virtual Concatenation)和链路容量调整规范 LCAS (Link Capacity Adjustment Scheme)。通过 VCAT 技术,可以实现以太网数据到 VC-12 虚级联组(Virtually Concatenated Group) VCG 的映射/解映射;通过 LCAS 技术,可以实现无损伤的带宽调整。

155SC 提供 4 个相互独立的 VCG, 每个 VCG 可分别选择 LCAS 打开/关闭, 以及 V5, K4_B1

的配置。

当 LCAS 功能打开时,可以实现以下功能:

- 带宽无损伤的调整:用户通过网管系统发出带宽调整指令后,本端设备通道自动与对端
 设备通道进行协商对带宽进行调整,带宽调整过程中不丢包;
- Ⅱ 故障线路自动处理:当某条支路出现严重告警如 TU-LOP 或者 TU-AIS 时,系统能够自动切断故障线路,保证数据传输不会中断;当线路故障消失后,能够自动恢复使用;
- Ⅲ 劣化线路处理:当某条支路出现误码但还没有导致严重故障时,在处理器的配合下,可以对误码率过高的支路暂停使用;
- Ⅳ 混插能力: LCAS 不需要收发双方向按照支路的序号严格匹配,即收发两端的所有支路 可以任意连接。

V5(b5~b7)和 K4_B1 作为信号标记和扩展信号标记,指示了 VCG 的组成状态,V5(b5~b7) 为发送信号标记(TSL),用于标识该通道所承载的业务类型。K4_B1 为 扩展信号标签(ESL),用 于指示内容中数据封装格式,在出厂缺省情况下,V5 默认值为 0A,为标准通信配置;K4_B1 默 认值为 0D,为标准通信配置。在与其它厂家设备对通时,如果 V5 或 K4_B1 发送和接收不一致, 接收侧会出现相应支路信号标记不匹配告警(PLM),此时建议将对方设备 V5 字节设为 0x0A,将 K4_B1 设置为 0x0D.

相关配置方法请参考《RAYVIEW 网管用户手册》或《Guide to CLI command of 155SC》。 注意:当与相同设备通信时,保持缺省值;当与其它厂商设备通信时,根据需要改变上述配置项。

5.10 设备定时

5.10.1 定时源

155SC 设备提供多种定时源:

- 跟踪从 STM-1 光口 A 中提取出的定时信号 T11;
- 跟踪从 STM-1 光口 B 中提取出的定时信号 T12;
- 跟踪符合 ITU-TG.813 标准的内部定时源;

5.10.2 定时状态

根据 ITU-TG.813 和 G.783 标准,设备时钟有四种工作模式:

锁定模式:从有效的备选参考源中选出最优时钟,转为锁定工作模式;这种工作模式跟踪锁定相同级或上一级传递的时钟。

跟踪模式: 跟踪模式是进入锁定模式之前的一个瞬态过程;

保持模式:锁定参考源>32 秒后,所有时钟源丢失,则设备进入保持模式,保持锁定前参考源的信 号频率值。 自由振荡模式:设备没有参考源,或者锁定某参考源时间<32秒,所有参考源丢失,或者设备在保持模式下超过24小时,则设备进入自由振荡模式。

5.10.3 定时源选择

定时源选择分为自动选择和手动选择两种模式:

自动选择

自动选择模式即自动选择进程,从人工圈定的时钟参考源中依次按照信号失效(参考源告警),SSM质量等级,频偏以及预置的优先级,顺序选择出最优的参考源作为设备的主时钟。主时钟被选出后即可被锁定。当主时钟信号出现故障,且没有其它可选的参考源能够作为主时钟时,系统时钟进入保持模式。

手动选择

手动选择(人工强制模式)即人为强制设定时钟来源或时钟状态,使自动选择进程完全停止 或只部分运行。人工强制功能是测试功能。在一些简单网络应用中,时钟源来源简单,使用人工 强制功能可以简化网络配置。人工强制设置在设备掉电和重启后不需要再次配置。

人工强制功能包括强制选择时钟源和强制定时模式:

• 人工强制选择跟踪参考源:强制设备跟踪某个参考源:T11、T12或LOCAL。如果选择的参考源有故障(如参考源丢失、失效或者频偏过大),则不进行时钟源倒换,如果前一个状态为跟踪状态,则进入保持模式;前一个状态为自由振荡状态,则仍为自由振荡模式。人工强制选择跟踪本地时钟LOCAL,相当于强制设备进入自由振荡模式。

 从锁定状态强制进入保持模式:只有当锁定参考源后(不考虑锁定状态时间),进入了锁定状态。才能通过人工强制,使设备钟进入保持模式。在设备未进入锁定状态时, 无法强制设备进入保持模式。

从锁定或者保持模式强制进入自由振荡模式:当设备钟处于锁定状态或者保持模式,通过人工强制,可以使设备时钟进入自由振荡模式。

5.10.4 同步状态消息(SSM)

SSM 用来指示参考定时源的质量等级(QL)。 STM-1 光线路通过的 S1 开销字节传递。 符合 ITU-T G.781 标准。缺省情况下, SSM 功能被关闭。

QL	S1(b5-b8))	描述
0	0000	质量等级未知
2	0010	1级基准时钟

表 5-10-4-1 SSM 质量等级说明

4	0100	2级节点时钟
8	1000	3级节点时钟
11	1011	SDH 网元设备时钟 (SETS)
		设备的内部振荡时钟
		注:此为系统默认值
15	1111	同步信号不可用
Others		预留

注意:需要工程上避免以下两个问题的产生;

1) 避免光口自环,否则会造成设备定时状态在锁定和自由振荡状态之间变换。

2) 在非倒换时, SSM 的发送者需避免 SSM 值连续变化, 否则会引起设备时钟故障。

5.10.5 默认定时设置

155SC 设备可通过网管软件或 CLI 命令设置时钟模式,配置支路定时源,配置时钟优先级, 配置频偏越限倒换,打开或关闭 SSM(同步状态消息)等。相关配置参见《RAYVIEW 网管用户 手册》或 《Guide to CLI command of 155SC》。

默认定时设置如下:

时钟选择模式: 自动选择模式

时钟优先级: 第一级: LOCAL; 第二级: T11 (光口 A); 第三级: T12 (光口 B), (即:设定设备启动后,默认工作在自由振荡)

频偏检测功能:开

SSM 功能:关闭

5.11 环回控制

155SC 设备支持多种由软件配置的环回模式,如图 5-11-1 所示:

- ① : A/B 光口向线路侧直接环回
- ② : E1 端口向线路侧环回,并自动向设备侧插 AIS 码
- ③ : E1 端口向设备侧环回,并自动向线路侧插 AIS 码
- ④:TU-12通道向线路侧环回

图 5-11-1 环回模式

光口环回①和 TU12 通道环回④只能通过 CLI 命令进行配置, E1 端口环回②与③通过 CLI 和网管软件都可以进行配置。以上环回默认配置为无环回,具体操作参见《RAYVIEW 网管用户手 册》或《Guide to CLI command of 155SC》。

注意:设备对光口,E1口及TU-12通道的环回配置没有存储,即当设备掉电重起后,原来配置为环回的光口或E1口或TU-12通道都将处于不环回状态。

5.12 内置误码仪

155SC 提供内置误码仪功能,该误码仪功能强,使用简单灵活,性能稳定可靠。在设备测试和工程开通中,不需要另外添加昂贵的仪表,就可以通过设备内置误码仪进行测试,在方便用户操作的同时也节省了时间和成本。

5.12.1 特点

- ▶ 可发送和检测内容为 2¹⁵-1 的 2.048Mb/s 伪随机序列
- ▶ 伪随机信号可插入(取出)到光线路方向或 E1 物理口方向
- ▶ 提供误码计数器,实现误码统计功能

5.12.2 使用说明

启动误码仪功能,向被测试通道(从 E1_1 到 E1_8 中任意选择一路)发送 2¹⁵-1 伪随机序列码,配合相关操作,在接收侧(选择与发送侧相同的的通道)检测测试结果,监视 2¹⁵-1 伪随机序列并进行误码统计。

在开启误码仪的情况下,也可通过插入单比特误码的方法进行监测。

如图 5-12-2 所示,155SC 误码测试仪的发送可以选择光线路侧发送(位置(1))和 E1 侧发送(位置(3)),接收可以选择光线路侧接收(位置(2))和 E1 侧接收(位置(4))。

155SC 可以在同一台设备上配置发送和接收,也可以在不同的设备间分别配置发送和接收(如图 5-12-2-1 (b)),使用方式非常灵活。下面举几个典型应用案例加以说明。

图 5-12-2 BERT 功能说明

应用一:光线路侧发送,光线路侧接收单支路误码测试功能

选择需要测试的 E1 通道,在设备 1 的(1)位置,开启发送,同时将设备 2 相应的 VC12 对应的 E1 通道配置为线路侧环回或者用线缆环回,选择在设备 1 的(2)位置开启接收,如图 5-12-2-1(a) 所示。

如果选择在设备 2 对应 VC12 的 (2) 位置开启接收,可以测试一个单向线路,如图 5-12-2-1 (b) 所示。

本案例可用于在工程开通时验证 E1 通道是否存在问题。

图 5-12-2-1 误码仪应用案例 1

应用二:光线路侧发送,E1 侧接收单支路误码测试

选择需要测试的 E1 通道,在设备 1 的(1)位置开启发送,同时将设备 2 相应的 VC12 对应的 E1 通道配置为线路侧环回或者用线缆环回,选择在设备 2 的(4)位置开启接收,如图 5-12-2-2 所示。

图 5-12-2-2 误码仪应用案例 2

应用三: E1 侧发送, E1 侧接收单支路误码测试

本案例可用于对设备的 E1 电缆进行测试。选择需要测试的 E1 通道,在(3)位置,开启发送,同时将 E1 电缆环回,在(4)位置开启接收。如图 5-12-2-3 所示:

图 5-12-2-3 误码仪应用案例 3

注意:使用 E1 侧发送,E1 侧接收误码测试方式时,如果使用软件设置 E1 内部环回,则内置误码仪上会出现 LOS 告警,必须用 E1 线缆环回后,内置误码仪才能消除 LOS 告警.

155SC 支持通过 CLI 命令或 RAYVIEW 网管平台配置内置误码仪,方便业务测试或故障排除。 具体操作参见《RAYVIEW 网管用户手册》或《Guide to CLI command of 155SC》。 注意:设备对误码仪测试没有存储,即当设备掉电重起时,掉电前正在执行的误码仪测试在重启 后将不再执行。

5.13 网管通道

为了实现各网元或子网之间的统一网管,155SC 设备提供了网管通道,可以使用 SDH 开销 字节(D1 ~ D3 或 D6 ~ D8) 承载各网元的网管信息,或者利用符合 G.704 帧结构的内部 E1 通 道传输网管信息。

5.13.1 基于SDH开销的网管

基于 SDH 开销的网管,通过段开销字节完成网管信息传送,也叫做 DCC 网管。标准模式 下占用 D1、D2、D3 字节;非标准模式下占用 D6、D7、D8 字节。此网管方式只适用于全部由 我公司设备组成的网络。如图 5-13-1 所示,图中,NMS 网管只连接了站 1 的设备,通过基于 SDH 开销的网管方式将环内三台设备全部管理起来。

图 5-13-1 基于 SDH 开销的网管

注意:当设备首尾相接组成环形网时,相邻设备的光口必须采用交叉相连的方式,即光口 A-B、 B-A 连接,而不能够采用光口 A-A、B-B 方式相连。违反这个规则将会出现网管不通的现象。

5.13.2 基于内部 E1 通道的网管

155SC 提供两个内置网管接口(IEXM1, IEXM2),符合 G.704 帧结构,该接口在设备内部,不可见。IEXM1 与 IEXM2 内部接口可以被网管软件或 CLI 打开或关闭。具体参见《RAYVIEW 网管用户手册》或《Guide to CLI command of 155SC》.

基于内部 E1 通道的网管,即将 IEXM1/2 接口映射到 STM-1 上,分别占用一个 TU-12 时隙,利用符合 G..704 帧结构的内部 E1 通道,实现 DCC 通道开销从本地到远端的一种远程传递,从 而方便了网络管理。

5.13.2.1 应用案例一

如图 5-13-2-1 所示, 三个不同地域的 155SC 设备(图中标记为 NE)分别通过一个光口(光 口 A 或 B) 连接三个其它厂家设备(图中标记为 ADM), 接入到 SDH 网络中。通过 CLI 命令或 RAYVIEW 网管软件对三台设备进行配置后(参见下面的配置步骤),即可利用 STM-1 的任意可 用的 VC-12 通道,承载基于 E1 的网管信息,将三个设备基于 E1 的网管通道连接起来,实现三 台设备的统一网管。

注意:此案例仅利用 SDH 传输网上的一个光口,完成异地设备之间的统一管理。如果 155SC 设备之间的网管通道需要保护,则每台 155SC 设备的两个 IEXM 接口都需要使用,此时必须保证 相邻的 155SC 设备的 IEXM1 与 IEXM2 映射到某个相同的 VC-12 通道,即图中的 SlotM, N, K 的时隙不能相同;如果设备之间的网管通道不需要保护,则每台 155SC 设备只需要使用一个 IEXM 接口,此时图中的 SlotM, N, K 的时隙可以相同,即提高了带宽利用率。

下面将以网管通道需要保护的情况为例,介绍其配置步骤。

图 5-13-2-1 应用案例一

配置步骤:

- a 分别设置三台设备的站址,保证每台设备的站址唯一
- b 将 NE1 设置为网关
- c 关闭 155SC 设备的光口的 DCC 通道,以免影响其它厂家设备(图中标记为 ADM)的统一网 管。
- d 配置交叉连接,保证相邻 155SC 设备的 IEXM1 与 IEXM2 映射到某个相同的 VC-12 通道, 且同一台 155SC 设备的 IEXM1 与 IEXM2 配置的时隙不能相同;例如将 NE1 的 IEXM1 接口 和 NE2 的 IEXM2 配置到 A 光口的时隙 1;将 NE1 的 IEXM2 接口和 NE3 的 IEXM1 配置到 A 光口的时隙 2;将 NE2 的 IEXM1 和 NE3 的 IEXM2 配置到 A 光口的时隙 3。

5.13.2.2 应用案例二

如图 5-13-2-2 所示, 三个 155SC 设备(图中标记为 NE)分别通过两个光口(光口 A 和 B) 与三台其它厂家设备(图中标记为 ADM),组成 SDH 环网络。通过 CLI 命令或 RAYVIEW 网管 软件对三台设备进行配置后(参见下面的配置步骤),即可利用 STM-1 的任意可用的 VC-12 通道, 承载基于 E1 的网管信息,将三个设备基于 E1 的网管通道连接起来,实现三台设备的统一网管。 注意必须保证相邻的 155SC 设备的 IEXM1 与 IEXM2 映射到某个相同的 VC-12 通道,而为了提 高带宽利用率,155SC 设备可以采用 1+0 模式,slot M, slot N 和 Slot k 可以配置相同的时隙。

此案例利用 SDH 传输网上的两个光口,完成异地设备之间的统一管理。如果各 155SC 设备 之间,承载基于 E1 网管的 VC-12 通道采用 1+0 模式,则既可以保证各 155SC 设备间的网管通 道存在保护,又可以占用最少的通道时隙,提高带宽利用率。

图 5-13-2-2 应用案例二

配置步骤:

- a 保证每台 NE 的 A 光口必须与其相邻设备 (NE) 的 B 光口相接,如将 NE1 的 A 光口与 NE2
 的 B 光口相连,同时将 NE1 的 B 光口与 NE2 的 A 光口相连。
- b 分别设置三台设备的站址,保证每台设备的站址唯一
- c 将 NE1 设置为网关
- d 关闭 155SC 设备的光口的 DCC 通道, 以免影响其它厂家设备(图中标记为 ADM)的统一网管。
- e 配置交叉连接,保证相邻 155SC 设备的 IEXM1 与 IEXM2 映射到某个相同的 VC-12 通道,为了提高带宽利用率,将同一台 155SC 设备的 IEXM1 与 IEXM2 配置到不同光口的相同时隙(即配置保护模式为 1+0)。例如将 NE1 的 IEXM1 接口配置为 A 时隙 1, IEXM2 接口配置为 B 时隙 1; NE2 的 IEXM1 接口配置为 A 时隙 1, IEXM2 接口配置为 B 时隙 1; NE3 的 IEXM1 接口配置为 A 时隙 1, IEXM2 接口配置为 B 时隙 1。

5.14 告警和性能

155SC 设备提供了丰富的告警监控,如表 5-14-1 所示;

表 5-14-1 设备告警项列表

英文缩写	告警名称	告警级别	告警分类
物理端口告警信息(A/B)			
RPD	远端设备掉电告警	主要	UALM

NOP	光消失告警	紧急	UALM
*TF	发送失效告警	紧急	UALM
*TD	发送劣化(即偏置电流过高告警)	主要	UALM
*RPL	光接收功率过低	次要	DALM
*RPH	光接收功率过高	主要	UALM
*LPL	光输出功率过低	次要	DALM
*LTH	激光器温度过高	次要	DALM
	再生段(RS)告警信息(A/B)		
OOF	帧失步告警	紧急	UALM
LOF	STM-1 帧丢失	紧急	UALM
RS-TIM	再生段踪迹失配	次要	DALM
	复用段(MS)告警信息(A/B)	-	
MS-RDI	复用段远端缺陷指示	次要	DALM
MS-EXC	复用段误码率越限	主要	UALM
MS-DEG	复用段信号劣化	次要	DALM
MS-AIS	复用段 AIS 告警	次要	DALM
AU-LOP	AU 管理单元指针丢失告警	紧急	UALM
AU-AIS	AU 指针 AIS 告警	次要	DALM
	高阶通道(HOPL)告警信息(A/B)	-	
HP-UNEQ	高阶通道未装载告警	紧急	UALM
HP-TIM	高阶踪迹失配告警	紧急	UALM
HP-PLM	净荷失配告警	紧急	UALM
HP-RDI	高阶通道远端缺陷告警	次要	DALM
HP-EXC	高阶通道信号误码过量	主要	UALM
HP-DEG	高阶通道信号劣化	次要	DALM
HP-AIS	高阶通道 AIS 告警	次要	DALM
TU-LOM	支路单元复帧丢失	紧急	UALM
低阶通道告警(Drop1/Drop2)			
TU-LOP	TU 指针丢失	紧急	UALM
TU-AIS	TU告警指示	主要	UALM
LP-RDI	低阶通道远端接收失效指示	主要	UALM
LP-PLM	低阶通道信号标记失配	主要	UALM
LP-UNEQ	未装载	紧急	UALM
EOS 通道告警(EOS 与 E1 不同的通道告警,其它通道告警与 E1 相同)			

LP-AIS	低阶通道 AIS 告警	主要	DALM
K4B1-LOM	K4B1 复帧丢失	次要	DALM
K4B1-PLM	K4B1 扩展信号标记失配	主要	UALM
	设备定时源告警(设备告警)		
LTI	定时源丢失	紧急	UALM
TIMEDeg	定时信号劣化 (定时源频偏越限告警)	主要	UALM
SSMBMismatch	同步定时标识失配	主要	UALM
	E1 端口告警(E1_1~8)		
TLOS	E1 支路接侧信号丢失告警	紧急	UALM
内置网管扩展接	口(IEXM1/2)状态信息,不做为告警上传	,不点亮告3	警灯
1.08	内部 IEXM 输入口信号丢失		
203	(原因可能是未配置分配时隙造成)		
AIS	内部 IEXM 输入接口数据全 1 告警		
LOF	G.704 帧丢失		
LOMF	G.704 CRC-4 复帧丢失		
RAL	远端告警		
RAL-CRC	远端 CRC 误码		
LAL-CRC	本地接收 CRC 校验		
以太网告警			
GFP-LOF	GFP 失步	主要	UALM
LaVCR-GIDM	GID 不匹配告警	次要	DALM
LaVCR-GLOA	组对准丢失告警(时延差超限)	次要	DALM
LINKDOWN	以太网电口(ETH1~ETH4)连接告警	紧急	UALM
LINE-MACLOOP	线路侧以太网数据环回告警(ETH1~ETH4)	次要	DALM
性能越限告警			
RS-EXCEED	再生段越限告警。	主要	UALM
MS-EXCEED	复用段越限告警。	主要	UALM
HP-EXCEED	高阶越限告警。	主要	UALM
LP-EXCEED	低阶越限告警。	主要	UALM

- 注: 1) UALM 告警将屏蔽 DALM 告警;
 - 2)表 5-14-1 中的告警等级为系统初始化默认配置,通过 Rayview 网管软件或 CLI 命令可以改变这些默认的告警等级;
 - 3)前面带有"*"号的告警表示:如果所选的 SFP 光模块不支持 DDM 功能,这些告

警将被屏蔽,如果所选的 SFP 光模块支持 DDM 功能,则这些告警只在对应项出现告警时才被显示。

155SC 支持通道性能统计,以太网性能统计以及 GFP 性能统计,分别如表 5-14-2, 5-14-3, 5-14-4 所示:

表 5-14-2 通道性能统计

名称	性能说明	标准
	再生段(RS)	
本端 EB	本端误块统计	ITU-T G.826 G.784
本端 ES	本端误块秒统计	ITU-T G.826 G.784
本端 SEC	本端严重误块秒统计	ITU-T G.826 G.784
本端 UAS	本端不可用秒统计	ITU-T G.826 G.784
	复用段(MS)	
本端 EB	本端误块统计	ITU-T G.826 G.784
本端 ES	本端误块秒统计	ITU-T G.826 G.784
本端 SEC	本端严重误块秒统计	ITU-T G.826 G.784
本端 UAS	本端不可用秒统计	ITU-T G.826 G.784
远端 EB	远端误块统计	ITU-T G.826 G.784
远端 ES	远端误块秒统计	ITU-T G.826 G.784
远端 SEC	远端严重误块秒统计	ITU-T G.826 G.784
远端 UAS	远端不可用秒统计	ITU-T G.826 G.784
	高阶性能(HP)	
本端 EB	本端误块统计	ITU-T G.826 G.784
本端 ES	本端误块秒统计	ITU-T G.826 G.784
本端 SEC	本端严重误块秒统计	ITU-T G.826 G.784
本端 UAS	本端不可用秒统计	ITU-T G.826 G.784
远端 EB	远端误块统计	ITU-T G.826 G.784
远端 ES	远端误块秒统计	ITU-T G.826 G.784
远端 SEC	远端严重误块秒统计	ITU-T G.826 G.784
远端 UAS	远端不可用秒统计	ITU-T G.826 G.784
PJP	AU 正指针调整统计	ITU-T G.826 G.784
PJN	AU 负指针调整统计	ITU-T G.826 G.784

低阶性能(LP)			
本端 EB	本端误块统计	ITU-T G.826 G.784	
本端 ES	本端误块秒统计	ITU-T G.826 G.784	
本端 SEC	本端严重误块秒统计	ITU-T G.826 G.784	
本端 UAS	本端不可用秒统计	ITU-T G.826 G.784	
远端 EB	远端误块统计	ITU-T G.826 G.784	
远端 ES	远端误块秒统计	ITU-T G.826 G.784	
远端 SEC	远端严重误块秒统计	ITU-T G.826 G.784	
远端 UAS	远端不可用秒统计	ITU-T G.826 G.784	
PJP	TU 正指针调整统计	ITU-T G.826 G.784	
PJN	TU 负指针调整统计	ITU-T G.826 G.784	
CV	E1 端口编码违例计数统计		

表 5-14-3 以太网性能统计

	性能统计	定义
LAN 口和 WAN 口	RX Byte Count	收到的以太网字节数统计
	RX Packet Count	收到的以太网包数统计
	TX Byte Count	发送的以太网字节数统计
	TX Packet Count	发送的以太网包数统计
	Drop packet Count	丢弃的以太网包数统计(包括超长包,超短包,CRC 错
		包等)
	Drop Byte Count	丢弃以太网包的字节数统计

注意:以太网性能统计可以选择按照字节数或包数进行统计,具体配置请参考《RAYVIEW 网管用户手册》或《Guide to CLI command of 155SC》。

5.15 设备管理

155SC 支持基于 RS232 串口(CONSOLE 接口) 和 Telnet (EMU 接口)的 CLI 命令行管理 方式,通过 CLI 命令可以配置设备参数(如设置时钟,打开或关闭 ALS,配置通道保护,以太网 电口工作模式等),监控各种告警,进行各种故障排除测试,如 E1 环回测试和内嵌 E1 误码仪测 试等,具体参照《Guide to CLI command of 155SC》。

155SC 同样支持基于 SNMP (V1 和 V2C)的网络管理平台,通过 RAYVIEW 网络管理平台 对设备进行各种配置以及告警查询和监控。具体参见《RAYVIEW 网管用户手册》。注意应使网 管计算机的 IP 地址和设备的 IP 地址保持在同一个网段,才能正常建立连接。

表 5-15-1 设备管理信息默认配置

序号	管理对象	初始值	CLI	管理	RayView
			Telnet	CONSOLE	
1	MAC 地址	生产时唯一设定	只读	读/写	只读
2	IP 地址	192.168.0.155	只读	读/写	读/写
3	子网掩码	255.255.255.0	只读	读/写	读/写
4	缺省网关	192.168.0.1	只读	读/写	读/写
5	TRAP IP	127.0.0.1	不管理	读/写	读/写
6	Telnet 用户信息	用户名: user 密码: user	不管理	读/写	不管理

- I 打开包装,按《装箱单》检查包装箱内设备及配件的型号、数量是否正确,如有缺损请马上与供应商联系;
- Ⅱ 连接接口
 - ✔ 用合适的线缆连接相应的业务接口;
 - ✓ 将 SDH 网络通过光纤与设备的光接口相连;
 - ✓ 将网管控制终端与设备前面板的 CONSOLE 口或者设备前面板的 EMU 接口相连;
- Ⅲ 连接电源
 - ✓ 连接电源前请注意要把电源开关打到 OFF 的位置上。
 - ✓ 将设备后背板上的 PGND 端子与机房的大地可靠连接。
 - ✓ 注意本设备的电源配置,如果为交流电源供电,使用附件袋中的三芯电源线即可,如果为 直流供电,连接时注意电源极性并按照要求接入电源。

注意事项:

- a. 在插拔 SFP 光器件的过程中,设备必须良好接地,操作者必须良好接地,否则将导致设备损坏。
- b. 保证每台设备的 A 光口与相邻设备的 B 光口对接。
- c. 在使用光纤连接两台设备的光模块时,应该注意参考相应光模块的技术参数(发送光功率与过载光功率),使用时当接收功率超过其过载功率时,必须串入衰耗器。

7 技术参数

表	7-1	光接口

型号	波长 (nm)	速率 (bps)	输出功率 (dBm)	温度 (℃)	灵敏度 (dBm)	传送距离 (Km)	其他	分类 代码
RTXM139-400	1310FP	155M	-15~-8	-10~70	<-23	15	DDM	S-1.1
RTXM140-400	1310 FP	155M	-5~0	-10~70	<-34	40	DDM	L-1.1
RTXM140-500	1550 DFB	155M	-5~0	-10~70	<-34	80	DDM	L-1.2

注意:

1. 对于以上几种光模块,其接收侧过载功率<-8dBm,使用时当接收功率超过其过载功率时,必须串入衰耗器。

2. 如果用户选择设备自带的光模块,则其参数如表 7-1 所示; 如果用户选择其它型号的光模块, 其参数可能有所不同。

表 7-2 E1 接口

项目	指标
比特率	2.048Mb/s±50ppm
码型	HDB3
阻抗	75Ω非平衡式或120Ω平衡式
符合标准	输出抖动和抖动容限等符合 ITU-T G.703、G.704、G.823 建议。

表 7-3 以太网电接口

指标
RJ-45
支持自协商模式,强制模式。缺省为自协商模式
10/100Mb/s
半/全双工
缺省配置:关闭
缺省配置: 打开
IEEE802.3 10Base-T IEEE802.3u 100Base-Tx

表 7-4 以太网网管接口(EMU)

项目	指标
比特率	100Mb/s
连接器	RJ45

表 7-5 串行网管接口(CONSOLE)

项目	指标
波特率	19200
比特位	8
停止位	1
奇偶校验	无
电平	EIA-RS232 标准
连接器	RJ45

表 7-6 电源参数

项目	指标
DC 电压输入范围	-36~-72V DC
AC 电压输入范围	176~264V AC
功耗	小于 15W

表 7-7 设备尺寸和重量

项目	指标
机箱尺寸	270mm×44mm×195mm(宽×高×深)
重量	1.6kg

表 7-8 环境要求

项目	指标
工作温度	-5℃~50℃
贮存温度	-40°C~70°C
相对湿度	≤95%,无凝结

附录一 串行网管接口(CONSOLE)

表 A-1 串行网管(RJ45)接口的管脚说明

序号	定义	备注
PIN1	-	悬空
PIN2	-	悬空
PIN3	-	悬空
PIN4	-	悬空
PIN5	-	悬空
PIN6	GND	数据信号地
PIN7	RSNM-IN	串行网管通道输入(RS232电平)
PIN8	RSNM-OUT	串行数据输出(RS232电平)

串行网管线缆一端采用 RJ45 连接器连接到设备前面板的 CONSOLE 接口上,另一端采用 DB9 连接器与 PC 机相连,连接示意图见图 A-1-1、A-1-2 所示。

7:收数据 8: 发数据 6: 信号地

图 A-1-1 串行网管接口接线端子示意图

图 A-1-2 串行网管连线示意图

附录二 E1 接口

非平衡式 E1 接口采用 DB37 连接器,应使用匹配的专用线缆。图 A-2-1 为 4E1 75Ω 的 DB37F-BNC-4E1 线缆适配器, 图 A-2-2 为 8E1,75Ω 的 DB37F-BNC-8E1 线缆适配器.

图 A-2-1 75Ω 的线缆适配器(4E1)

图 A-2-2 75Ω 的线缆适配器 (8E1)

平衡式 E1 采用 RJ45 接口,线缆线序如表 A-2 所示:

表	A-2	120Ω	E1	接口	(RJ45	连接器)	线序

序号	定义	备注
PIN1	RXD+	平衡式E1接口输入P
PIN2	RXD-	平衡式E1接口输入N
PIN3	-	悬空
PIN4	TXD+	平衡式E1接口输出P
PIN5	TXD-	平衡式E1接口输出N
PIN6	-	悬空
PIN7	-	悬空
PIN8	-	悬空

附录三 相关文档

表 A-3 155SC 相关文档表

序号	名称	备注
1	RAYVIEW网管用户手册	
2	Guide to CLI command of 155SC	
3	155SC用户手册	

图索引

图 2-1 系统结构框图	7
图 3-1 典型应用一	10
图 3-2 点对点应用	10
图 3-3 链网应用	10
图 3-4 环网应用	11
图 4-1 前面板视图	12
图 5-2-1 1+1 模式	17
图 5-2-2 1+0 mode	18
图 5-7-1-1-1 基于端口VLAN的组网示例一	24
图 5-7-1-1-2 基于端口VLAN的组网示例二	25
图 5-7-1-1-3 基于端口VLAN的组网示例三	26
图 5-7-1-2-1 基于端口VLAN的组网示例一	26
图 5-7-1-3-1 以太网环回	28
图 5-7-2-3-1 802.1Q标签型VLAN组网示例	30
图 5-11-1 环回模式	37
图 5-12-2 BERT功能说明	38
图 5-12-2-1 误码仪应用案例 1	39
图 5-12-2-2 误码仪应用案例 2	39
图 5-13-1 基于SDH开销的网管	41
图 5-13-2-1 应用案例一	42
图 5-13-2-2 应用案例二	43
图A-1-1 串行网管接口接线端子示意图	52
图A-1-2 串行网管连线示意图	52

表索引

麦 2-2 组件说明	
表 2.3 插槽说明	,
表 4-1-1 前面板控制开关说明	
表 4.1.2 前面板指示灯说明	
表 4.1.3 FMI接口指示灯说明	
表 4.1.4 前面板 接口 说 阳	14
表 4. 2 后面板说明	17
表 5-5 PD 与NOP 生 整 杠 关 玄 道 昭	21
表 5.7.1 // ΔNm智档式	22
表 5-10-4-1 SSM质量等级说明	
表 5-14-1 设备生整面列表	43
表 5-14-7 通道性能统计	46
表 5-14-3 以大网性能统计	40 47
表 5 15 1 设久符任能统订	۲۲ ۸۵
农 J J J V 供 目 埕 旧 心	
衣 / □ 元安口	50 50
农 / - ∠ C I 按□	50 50
衣 /-3 以太四电按□	50 50
衣 /-4 以太内内自按口(EMU)	50 51
	51 51
衣 /-0 电源参数	
衣 /-/	51
衣 /-O	51
衣 A-1 中11 网目(KJ45) 按口的官脚说明	52 52
衣 A-2 I2012 EI 按口(KJ45	53
衣A-3 1333し 相大 乂 闫衣	54